Product Description

                                   Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings
 

Product Description

 

 

Service CNC Machining
Turning and Milling
CNC Turning
OEM Parts
Material 1). Aluminum: AL 6061-T6, 6063, 7075-T etc
2). Stainless steel: 303,304,316L, 17-4(SUS630) etc
3). Steel: 4140, Q235, Q345B,20#,45# etc.
4). Titanium: TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc
5). Brass: C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc
6). Copper, bronze, Magnesium alloy, Delrin, POM,Acrylic, PC, etc.
Finish Sandblasting, Anodize color, Blackenning, Zinc/Nickl Plating, Polish, 
Power coating, Passivation PVD, Titanium Plating, Electrogalvanizing,
electroplating chromium, electrophoresis, QPQ(Quench-Polish-Quench),
Electro Polishing,Chrome Plating, Knurl, Laser etch Logo, etc.
Main Equipment CNC Machining center(Milling), CNC Lathe, Grinding machine, 
Cylindrical grinder machine, Drilling machine, Laser Cutting Machine,etc.
Drawing format STEP,STP,GIS,CAD,PDF,DWG,DXF etc or samples. 
Tolerance +/-0.01mm ~ +/-0.05mm
Surface roughness Ra 0.1~3.2
Inspection Complete inspection lab with Micrometer, Optical Comparator, Caliper Vernier,CMM
Depth Caliper Vernier, Universal Protractor, Clock Gauge, Internal Centigrade Gauge
Capacity CNC turning work range: φ0.5mm-φ150mm*300mm
CNC milling work range: 510mm*1571mm*500mm

       Features of jaw coupling:

      1.Easy of inspection,easy maintenance.

      2.Can absorb vibration,parallel,angular and axial misalignments. 

      3.Identical clockwise and anticlockwise rotational charateristics.

      4.Both ends material is iron, intermediate for rubber materials.

      5.Simple configuration, setscrew type,low price.

      6.Hole can be self-processing,easy facilitate.

      7.For step motor,screw, machine positioning system.

     The SL cross slide coupling is slid in the corresponding radial grooves of the large end faces
     of the half couplings on both sides.
     The main feature of the slider coupling is that it allows the 2 shafts to have a large radial
     displacement, and allows for small angular displacement and axial displacement. Due to the
     centrifugal force generated by the eccentric motion of the slider, it is not suitable to use this
     coupling. High-speed movement, the coupling torque of the coupling is 120-63000N.m, the
     speed is 250-70r/min.

     Inspections:
     3D instruments, 2D instruments, Projectors, Height Gauges, Inner diameter dial indicators, Dial gaues, Thread 
     and Pin gauges, Digital calipers,Micro calipers, Thickness testers, Hardness testers Roughness testers, etc.
      ( Detection accuracy to 0.001 millimetre )

 

     Advantages:

     Protects driven component by serving as a mechanical “fuse” – an inexpensive replaceable plastic
     midsection shears under excess load.
     Protects support bearings by exerting consistently low reactive forces, even under large misalignments.
     Homokinetic transmission – driving and driven shafts rotate at exactly the same speed at all times.
     Zero backlash and high torsional stiffness.
     Accommodates large radial misalignment in a short length.
     Easy installation in blind or difficult installations when through-bores are used.
     Economically priced compared to other couplings with similar performance characteristics.

     CNC machining parts, metal machining parts, precision machining parts, Machined parts, Machinery 
     parts,Machine Parts,machining parts machining,Cnc machining parts machinery parts,machined 
     parts,precision machining parts,oem machining parts,cnc machining parts,cnc machined parts.

               Q: Why choose Shengao product?
               A: We shengao have our own plant– HangZhou Shengao machinery Co.,Ltd, therefore, we can 
               surely promise the quality of every product and provide you comparable price.

               Q: Do you provide OEM Service?
               A: Yes, we provide OEM Service.

               Q: Do you provide customized machining parts?
               A: Yes. Customers give us drawings and specifications, and we will manufact accordingly.

               Q: What is your payment term?
               A: We provide kinds of payment terms such as L/C, T/T, Paypal, Escrow, etc.

               If there’s anything we can help, please feel free to contact with us. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

jaw coupling

Using Jaw Couplings in Precision Motion Control Systems

Jaw couplings are versatile mechanical couplings commonly used in various industrial applications for transmitting torque between two shafts. While they offer many benefits such as simplicity, cost-effectiveness, and ease of installation, they may not be the best choice for precision motion control systems that require extremely accurate and repeatable positioning. The following factors should be considered when using jaw couplings in precision motion control systems:

  • Backlash: Jaw couplings typically have some degree of backlash due to the clearance between the jaws and the spacers. This can introduce positional errors and limit the ability to achieve precise movements, especially in systems that require bidirectional positioning.
  • Angular and Parallel Misalignment: While jaw couplings can accommodate some degree of misalignment, precision motion control systems often require tight tolerances and minimal misalignment to achieve accurate positioning. In such cases, more rigid and flexible couplings, such as servo couplings or beam couplings, may be preferred.
  • Torsional Stiffness: In precision motion control, minimizing torsional wind-up and maintaining torsional stiffness is essential for precise and responsive movements. Jaw couplings may not provide the required level of torsional stiffness needed for high-performance motion control applications.
  • Resonance and Vibration: In precision motion systems, avoiding resonance and minimizing vibration is crucial for stability and accuracy. The damping characteristics of jaw couplings may not be sufficient to suppress vibrations and resonant frequencies, which can adversely affect performance.

While jaw couplings are widely used in general industrial applications, precision motion control systems often demand more specialized and precise coupling solutions. Some alternatives that are better suited for precision motion control applications include servo couplings, beam couplings, and disc couplings. These couplings offer higher torsional stiffness, lower backlash, and better overall performance for demanding motion control requirements.

When selecting a coupling for precision motion control, it is essential to consider the specific requirements of the application, including torque, speed, misalignment, and stiffness, to ensure the chosen coupling can meet the precision and performance demands of the system.

jaw coupling

What are the real-world applications of jaw couplings in various industries?

Jaw couplings find extensive use in various industries due to their versatility, ease of installation, and ability to handle misalignment. Their robust design and flexible elastomer spider make them suitable for a wide range of applications. Here are some real-world applications of jaw couplings in different industries:

  1. Industrial Machinery: Jaw couplings are commonly used in industrial machinery for power transmission between motors and driven equipment. They are found in conveyor systems, pumps, fans, compressors, mixers, and other rotating equipment. Their ability to compensate for misalignment and dampen vibrations makes them ideal for such applications.
  2. Agriculture: In agricultural equipment, jaw couplings are employed to transfer power from tractors or other power sources to various implements such as plows, mowers, and harvesters. The couplings’ resistance to shock and impact loads makes them suitable for the rugged conditions encountered in agricultural operations.
  3. Construction and Mining: Jaw couplings are used in construction and mining machinery to transmit power between engines and equipment like concrete mixers, excavators, rock crushers, and conveyor systems. The couplings’ ability to handle misalignment and shock loads is beneficial in these demanding and dynamic environments.
  4. Material Handling: Jaw couplings are employed in material handling systems, including automated production lines and warehouse conveyors. They facilitate smooth power transmission in equipment like belt conveyors, bucket elevators, and packaging machines.
  5. Marine: In the marine industry, jaw couplings are used in propulsion systems to connect engines to propellers and other equipment. Their resistance to corrosion and ability to handle misalignment make them suitable for marine applications in various vessels, including boats and ships.
  6. Printing and Packaging: Jaw couplings are used in printing and packaging machinery to drive rollers, slitters, and other components. Their precise torque transmission and ability to handle small misalignments contribute to the smooth operation of these machines.
  7. Automotive: In the automotive sector, jaw couplings are used in various applications, including power steering systems, engine-driven accessories, and HVAC blowers. Their compact design and efficient power transmission characteristics are well-suited for automotive applications.
  8. Textile: Jaw couplings are used in textile machinery to drive spinning frames, looms, and other textile processing equipment. Their ability to handle misalignment and provide smooth power transmission is vital in maintaining the precision required for textile production.
  9. Medical Equipment: Jaw couplings are utilized in medical devices and equipment to transfer power between motors and driven components. Their compact size and quiet operation are advantageous for various medical applications.
  10. Renewable Energy: Jaw couplings are used in renewable energy applications, such as wind turbines and solar tracking systems, to transmit power between the generator and other components. Their ability to handle misalignment is beneficial in these dynamically changing environments.

In summary, jaw couplings have widespread applications across multiple industries due to their ability to handle misalignment, dampen vibrations, and provide efficient power transmission. Their adaptability and reliability make them a popular choice for various mechanical systems in different sectors.

jaw coupling

Handling Angular, Parallel, and Axial Misalignment with Jaw Couplings

Jaw couplings are designed to handle various types of misalignment that can occur between the shafts they connect. These misalignments include:

  • Angular Misalignment: When the shafts are not aligned in a straight line and have an angular offset, jaw couplings can accommodate this misalignment due to the flexibility of their elastomeric spider. The spider allows for a limited amount of angular movement between the hubs, reducing stress on the connected equipment.
  • Parallel Misalignment: Parallel misalignment occurs when the shafts are not perfectly aligned but are parallel to each other. Jaw couplings can handle parallel misalignment to some extent, thanks to the elastomeric spider’s ability to flex and offset slight shaft misalignments.
  • Axial Misalignment: Axial misalignment refers to the displacement of shafts along their rotational axis. While jaw couplings are primarily designed for torque transmission and misalignment compensation, they have limited capability to handle axial misalignment. Excessive axial misalignment can lead to premature wear and reduce the coupling’s effectiveness.

It’s important to note that jaw couplings have specific misalignment limits, and exceeding these limits can lead to increased wear and decreased performance. Regular maintenance and inspection of jaw couplings are essential to ensure they are operating within acceptable misalignment parameters.

China Standard Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings  China Standard Cast Iron Elastic Shaft Coupling Flexible Jaw Couplings with Rubber Motor Couplings
editor by CX 2024-03-15