Product Description

Product Description

 

 

      Steel flexible joint is also called clamp, open expansion joint, steel flexible pipe joint. Steel flexible joint is a kind of pipe connection, reliable performance, easy to install products. At low pressure, by the elastic deformation of the sealing ring, to achieve the purpose of sealing; When the pressure increases, the medium acts on the sealing ring to play the role of self-sealing, and there is a gap between the pipe ends to compensate for the displacement and deflection of the pipe caused by thermal expansion and cold contraction.

The working temperature of the clamp joint is generally -30ºC-+130ºC. The medium property is weak acid, weak alkali and lubricating oil range can be applied. If beyond the above range can also provide our company with the nature of the medium parameters or optional parameters or optional specified rubber ring material. In addition to the connection function, the joint can also provide compensation, withstand axial force, provide Angle, reduce vibration wave, adapt to the change of foundation.

The advantages of clamp joint:

1 Clamp joint has good continuity, will not produce distortion, easy to achieve the ideal laying state.
2 Clamp pipe joint in a free state, do not bear the weight of the pipe, not subjected to external shear, especially DN200 pipe diameter, more must consider the weight of the pipe.
3. It is easy to keep the coaxial position when installing the clamp joint to ensure the uneven distribution of the radial clearance between the inner diameter of the pipe clamp and the outer diameter of the pipe. The rubber ring will be deformed under high pressure due to the large local clearance, which will affect the sealing effect and even destroy the rubber ring.
4. It is suitable for the application in the subsidence zone, which can reduce the Angle between the pipe segments caused by the subsidence of the support pier.
5 is conducive to pipeline maintenance. Turn the pipe, save labor and effort when changing the pipe.
 

Detailed Photos

 

 

 

 

Product Parameters

PN1.6/2.5/4.0/6.4MPa     KRHD
 

DN(mm) Dw(mm) Allowable  Angle
Φ
Installation  length
L   (mm)
Maximal length
(mm)
Fitting  bolt 
d×L    (mm)
80 89 17.90 100 110 M12*60
100 108 15.06 100 110 M14*60
125 133 13.05 105 115 M14*60
150 159 12.09 110 120 M14*60
175 194 10.51 110 120 M16*60
200 219 9.33 116 126 M16*75
225 245 8.36 122 132 M16*80
250 273 7.51 127 137 M18*90
300 325 6.32 130 140 M18*100
350 377 5.45 135 145 M18*100
400 426 4.80 140 150 M18*110
450 480 4.28 145 155 M18*110
500 530 3.88 150 160 M18*120
600 630 3.27 155 165 M18*120
700 720 2.86 160 170 M20*120
800 820 2.51 165 175 M20*130
900 920 2.24 170 180 M20*130
1000 1571 2.02 175 185 M20*130
1200 1220 1.69 180 190 M22*140
1400 1420 1.45 185 195 M22*140
1600 1620 1.27 190 200 M22*140
1800 1820 1.13 195 205 M22*150
2000 2571 1.01 200 210 M24*150
2200 2571 1.01 205 215 M24*150
2400 2420 1.01 210 220 M24*150
2600 2620 1.01 215 225 M24*160
2800 2830 1.01 220 230 M27*160
3000 3571 1.01 225 230 M27*160
3200 3220 1.01 230 240 M27*180

 
Datas above are only for reference,if you want to know more details, please click here to contact us.

 

Installation Instructions

 

1. Prepare groove pipe sections, fittings and accessories that meet the requirements.

2. Check whether the rubber sealing ring is damaged and put it on the end of a steel pipe.
3. There should be a certain gap between the end and both ends of the steel pipe close to the end and both ends of the pipe which has been         covered with rubber sealing ring. The clearance shall meet the standard requirements.
4.  Put the rubber seal ring on the end of another steel pipe, make the rubber seal ring in the middle of the interface, and apply lubricant on the same side.
5. Check the axis of the pipe.
6. Install upper and lower clamps on the outer side of rubber seal-ing ring at the interface position, and clip the collar convex edge into the groove.
7. Press the upper and lower clamp ears with hand force, tighten the collar of the clamp with a wooden hammer, and tighten the upper and lower clamps tightly.
8. At the clamp screw hole position, put on the studs and tighten the nuts evenly to prevent the rubber sealing ring from wrin-kling.
9. check  and  comfirm  that  the  collar  convex  edge  is  clamped  into  the  groove.
 

products application

 

 

Company Profile

 

         HangZhou Ruixuan pipeline equipment factory was founded in 1996.It  is an excellent  enterprise  specializing  in manufacturing  and selling pipe fittings.It’s located  in Xicun village ,HangZhou  city,ZheJiang province ,the concentrated  area  of pipeline equipment industry  in China.The company factory  is located  in Xicun town pipeline equipment industrial park.It covered an area of20000  square  meters.

         At present, the company has the production capacity of pipeline equipment with a maximum diameter of 4000mm, and its main products are: Steel expansion joint, flexible waterproof sleeve, large diameter flange, double flange force transfer expansion joint, large deflection loose sleeve compensation joint, spherical compensation joint, sleeve compensator, bellows compensator, non-metallic compensator, rubber expansion joint, DC medium no thrust sleeve compensator, flexible expansion pipe and other pipeline equipment. The annual production capacity is 30 million sets.

        The flexible telescopic pipe equipment is mainly used in the pipeline crossing different geological structures under different conditions and the application of pipe installation drop, reduce or avoid the impact of geological settlement and crustal activity on the pipeline, so that the construction unit can save more than 50% of the cost when purchasing the equipment. The rubber expansion joint series products of the company, the maximum production diameter of 3600mm, have been applied in millions of units of thermal power projects in China for many times, and have been praised by the users.

        The company passed ISO9001:2008 quality management system certification in 2009 and ISO14000:2004 environmental management system certification in 2009. The company has a strict quality control system, standard production process, standard factory inspection hand section, to ensure that every product meets the national standards and customer requirements.

       Business philosophy: responsible production of products, return the trust of customers; To build a community with a sense of belonging and appreciate employees’ contributions; Make a contribution to the society of enterprises, give back to the good times. HangZhou Ruixuan pipeline equipment factory is willing to work with friends from all walks of life hand in hand, mutual support, create a better future!

 

Certifications

 

 

FAQ

 

Q:Can you make the product as per client’s requirement?
A:Yes, we can make it with your exact requirement.

Q:What are your payment terms?
A:T/T (30% as deposit, the rest 70% will be paid before delivery), L/C at sight.

Q:Where is your nearest loading port?
A:ZheJiang , HangZhou or ZheJiang , China.

Q:How can you guarantee the quality or any warranty?
A:If any quality problems during use, all the products can be returned or according to consumer’s requests.

Q:Do you accept small quantity order?
A:Of course we do.

Q:And what is your shipment and delivery time?
A:By sea or air. Normally 7 to 14 Days for delivery, according to your order quantity.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

jaw coupling

Factors to Consider When Choosing a Jaw Coupling for a Specific System

Choosing the right jaw coupling for a specific system is crucial to ensure efficient power transmission and reliable operation. Several factors should be considered when making the selection:

  • Torque and Power Requirements: Calculate the torque and power requirements of the system to determine the appropriate size of the jaw coupling. Ensure that the selected coupling can handle the maximum torque and power output without exceeding its rated capacity.
  • Shaft Size: Match the jaw coupling’s bore size to the shaft diameters of the connected equipment. The coupling’s bore should be slightly larger than the shaft diameter to allow for easy installation and proper clamping.
  • Misalignment Compensation: Evaluate the degree of misalignment that the system may experience during operation. Jaw couplings can handle angular, parallel, and axial misalignment to varying degrees, but it’s essential to choose a coupling with the appropriate misalignment capabilities for the specific application.
  • Operating Speed: Consider the operating speed of the system. Some jaw couplings are designed for high-speed applications, while others are more suitable for lower speeds. Choosing a coupling that matches the system’s operating speed helps prevent issues such as resonance and premature wear.
  • Environmental Conditions: Assess the environmental conditions in which the coupling will operate. Factors such as temperature, moisture, and exposure to chemicals can influence the choice of material for the jaw coupling.
  • Backlash: Determine if the application requires minimal or zero backlash. Some jaw couplings may have inherent backlash due to their design, while others are designed to provide backlash-free operation.
  • Installation and Maintenance: Consider the ease of installation and maintenance of the jaw coupling. Some couplings may have a split design, making installation and replacement simpler.
  • Cost and Budget: Compare the cost of the jaw coupling with the system’s budget. While it’s essential to select a high-quality coupling, it’s also crucial to ensure it fits within the budget constraints.

By carefully evaluating these factors, engineers and designers can make an informed decision when choosing a jaw coupling that meets the specific requirements of the system, leading to optimal performance and longevity of the mechanical system.

jaw coupling

What are the factors influencing the thermal performance of a jaw coupling?

The thermal performance of a jaw coupling is influenced by several factors that affect its ability to dissipate heat and handle temperature fluctuations during operation. Here are the key factors that can impact the thermal performance of a jaw coupling:

  • Material Selection: The choice of materials used in the construction of the jaw coupling plays a significant role in its thermal performance. High-quality materials with good thermal conductivity can efficiently dissipate heat, reducing the risk of overheating and premature wear. Common materials used in jaw couplings include steel, aluminum, and various elastomers.
  • Elastomer Spider: The elastomer spider in the jaw coupling is a crucial component that can influence thermal performance. The type of elastomer and its specific characteristics, such as hardness and thermal conductivity, can affect the coupling’s ability to absorb and dissipate heat generated during operation.
  • Operating Speed: The rotational speed of the coupling impacts its thermal performance. Higher operating speeds can generate more heat due to increased friction and stress on the coupling components. It is essential to ensure that the jaw coupling is rated for the specific operating speed of the application to prevent overheating and premature failure.
  • Torque and Load: The torque and load applied to the jaw coupling can also influence its thermal performance. Higher torque and load levels can result in increased heat generation. Properly sizing the coupling based on the application’s torque and load requirements is essential to prevent excessive heat buildup.
  • Operating Environment: The environment in which the jaw coupling operates can impact its thermal performance. For example, if the coupling is located in an area with limited airflow or high ambient temperatures, it may experience reduced heat dissipation capabilities. On the other hand, an environment with good ventilation can help in maintaining the coupling’s thermal performance.
  • Lubrication: Some jaw couplings may require lubrication to reduce friction and heat generation. Proper lubrication can enhance the coupling’s thermal performance and extend its service life. It is essential to follow the manufacturer’s guidelines regarding the type and frequency of lubrication to ensure optimal performance.
  • Continuous vs. Intermittent Operation: The thermal performance of a jaw coupling can also be influenced by the nature of its operation—continuous or intermittent. Intermittent operation allows the coupling to cool down between cycles, reducing the overall heat buildup compared to continuous operation, which may lead to higher operating temperatures.

Overall, careful consideration of these factors is crucial in ensuring the efficient thermal performance of a jaw coupling. Proper selection, installation, and maintenance of the coupling based on the specific application requirements can help prevent overheating, reduce wear, and prolong the coupling’s lifespan.

jaw coupling

Limitations and Disadvantages of Using Jaw Couplings

While jaw couplings offer several advantages, they also have some limitations and disadvantages that should be considered when selecting them for specific applications:

  • Angular Misalignment: Jaw couplings are sensitive to angular misalignment, and excessive misalignment can lead to increased wear and reduced service life.
  • Radial Misalignment: Similar to angular misalignment, radial misalignment should be kept within acceptable limits to prevent premature wear.
  • Temperature Limitations: The operating temperature range of jaw couplings may be limited by the material used. For high-temperature applications, other coupling types may be more suitable.
  • Shock Load Absorption: While jaw couplings can handle moderate shock loads, they may not be ideal for applications with severe shock loads, which can lead to increased stress and failure.
  • Torsional Stiffness: Jaw couplings have a certain level of torsional stiffness, which means they may not provide the same level of vibration isolation as other coupling types.
  • Backlash: Jaw couplings can have some degree of backlash due to their elastomeric element, which may not be desirable in precision positioning applications.
  • Speed Limitations: High-speed applications may require careful consideration of the jaw coupling’s design and material selection to avoid issues related to centrifugal forces.

Despite these limitations, jaw couplings remain a popular choice in many applications due to their ease of installation, simple design, and cost-effectiveness. Proper selection, installation, and maintenance can help mitigate some of these limitations and ensure optimal performance and reliability of the jaw coupling.

China OEM 4 Jaw L75 Vitaulic Couple 32 Inches Electric Motor 10mm Rigid Couplings  China OEM 4 Jaw L75 Vitaulic Couple 32 Inches Electric Motor 10mm Rigid Couplings
editor by CX 2024-03-05